
Games!

Sven Titgemeyer www.titgemeyer-it.de 29.10.2015

http://www.titgemeyer-it.de


What to expect

• No guide for games on Apple Watch 

• Gaming on Apple Watch is different 

• but programming is not



Agenda
• Why? 

• Architecture 

• Interface 

• Frameworks 

• An Example: Alien Ace 

• Storyboard 

• Game loop 

• Performance 

• Drawing



Why gaming on Apple 
Watch

• gaming is fun 

• some years ago people asked „Why games on your phone?“ 

• small market, but less competitors 

• people don’t know what to do with their Apple Watch :p 

• add a small game to your existing iOS Game 

• daily quests 

• bonus points



Architecture



Architecture
• WatchKit Extension runs on 

device 

• App and Extension are 
different targets running 
parallel 

• they share resources and 
data needs to be 
transferred



Interface
• No Sprite Kit, no magic, just WKInterface 

• let’s talk about some interesting classes: 

• WKInterfaceGroup 

• WKInterfaceButton 

• WKInterfaceLabel 

• WKInterfacePicker 

• WKInterfaceDevice



WKInterfaceGroup
• can embed other interface items 

• nested groups 

• can have a background image :) 
• func setBackgroundImage(_ image: UIImage?) 

• transparency 

• can have any size, but no size getters

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIImage_Class/index.html#//apple_ref/swift/cl/c:objc(cs)UIImage


WKInterfaceButton
• button with target-action 

• no sender 

• text or group as content 

• you can’t remove the animation if you use groups 

• empty string is perfectly fine 

• Color can be changed, e.g. UIColor.clearColor()



WKInterfaceLabel

• Can be used to render text 

• but strings need to be transferred from extension 
to app -> maybe too slow



WKInterfacePicker

• Only way to access Digital Crown 

• minimum size 2pt x 2pt 

• can be placed outside of view 

• can be initialized with „empty“ 
WKPickerItems, target-action



WKInterfaceDevice

• You can cache images up to 5MB in total 

• Play haptics, there are different predefined 
haptics you can run



Additional frameworks

• Core Graphics 

• Core Motion 

• UIKit 

• GameCenter (with a little help of your companion 
app)



Core Motion

• full access to accelerometer data 

• should be calibrated, because people hold their 
watch differently 

• My Case: I use only y value, save beginning 
value and use f(x)=4*(rawY - neutralY) to get 
values between -1 and 1



That’s all you got





Storyboard
• a few nested groups and 

buttons 

• Background group holds 
background image 

• Game Group displays the 
transparent game as 
background Image 

• transparent buttons are 
nested above



Storyboard
• note: All buttons are 

transparent 

• there aren’t any Labels 

• try to reduce the calls 
needed to talk to the app 

• multiple transparent 
layers need rendering 
time



Storyboard

• Size of game group is 
fixed, because there is 
no getter 

• make sure to use same 
size in game to prevent 
resizing



The game loop

• game loop is controlled by NSTimer 

• the app displays your game, you don’t know how fast, so you must 
chose your fps wisely 

• on a smaller screen might lower fps suffice, I use 6 fps, up to 
about 10 might be possible 

• If you set your fps higher you get lags



My game loop

• very simple: 

• updatePhysics() updates all Objects and runs all actions 

• collisionDetection() hitTests all objects, is surprisingly fast 

• draw() renders the scene in an UIImage, takes the majority of 
(extension) time



Memory
• memory on Apple Watch is limited 

• Apps often get terminated at about 30MB 

• share common data, use lightweight objects 

• e.g. share sprites between objects and only 
save the internal state of the object 

• Alien Ace runs with 2.5MB memory consumption



Some performance data
(Simulator data, as there are no symbols in Instruments using Device)



Some performance data
(Simulator data, as there are no symbols in Instruments using Device)



Some performance data
(Simulator data, as there are no symbols in Instruments using Device)

• image needs to be encoded as PNG to be transferred to the app 

• the time to encode correlates to the number of (non-transparent) 
pixels



Some performance data
(Simulator data, as there are no symbols in Instruments using Device)

• drawing takes a lot of time 

• drawing time correlates to the number of pixels drawn, this is a serious 
problem 

• trying to draw an entire screen takes way too much time



Too much pixels to 
draw fluent!



Solution?



Drawing non-retina
• non-retina drawing is much faster than retina drawing 

• drawing is faster, encoding and decoding is faster 

• set scale factor in UIGraphicsBeginImageContextWithOptions() 

• Retina Graphics drawn as non-retina look ugly -> create optimized 
versions



Loading non-retina graphics

• There’s no way to load non-retina from your 
asset-catalogue 

• I still use asset catalogue by setting the 1x 
Graphic as 2x Graphic 

• To render correctly you need to change the 
scale factor to 1x, but it’s readonly 

• place this in an extension:



Labels
• drawing text takes a significant amount of time 

• you can exchange CPU time for memory 

• often game labels do only need numbers 

• you can build a custom label with pre-rendered 
0-9 

• save them as UIImage, rendering will be much 
faster



Labels



Drawing
• Core Graphics 

• CGPath 

• UIKit drawing methods 

• UIImage.drawAtPoint() 

• UIBezierPath 

• watch out for expensive function calls



Drawing
• Alien Ace life gradient, 

implemented using Core 
Graphics 

• created in background at 
beginning, saved as UIImage 

• clipped to current life with 
CGContextClipToRect(…)



Multithreading

• GCD like on iOS 

• create stuff in QOS_CLASS_BACKGROUND 

• QOS_CLASS_USER_INITIATED for interactive 
drawing 

• INTERACTIVE might block your app



That’s it

• Questions and Discussion 

• feel free to add me on Xing, Facebook and 
Twitter


